(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
cond1(true, x, y) → cond2(gr(x, y), x, y)
cond2(true, x, y) → cond1(gr(add(x, y), 0), p(x), y)
cond2(false, x, y) → cond3(eq(x, y), x, y)
cond3(true, x, y) → cond1(gr(add(x, y), 0), p(x), y)
cond3(false, x, y) → cond1(gr(add(x, y), 0), x, p(y))
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
add(0, x) → x
add(s(x), y) → s(add(x, y))
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
p(0) → 0
p(s(x)) → x
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
cond1(true, s(x12_4), 0) →+ cond1(true, x12_4, 0)
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [x12_4 / s(x12_4)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)